

HIGHLIGHTS OF PRESCRIBING INFORMATION

These highlights do not include all the information needed to use ENOBY™ safely and effectively. See full prescribing information for ENOBY.

ENOBY™ (denosumab-qbde) injection, for subcutaneous use

Initial U.S. Approval: 2025

ENOBY™ (denosumab-qbde) is biosimilar* to PROLIA® (denosumab).

WARNING: SEVERE HYPOCALCEMIA IN PATIENTS WITH ADVANCED KIDNEY DISEASE

See full prescribing information for complete boxed warning.

- Patients with advanced chronic kidney disease are at greater risk of severe hypocalcemia following denosumab products administration. Severe hypocalcemia resulting in hospitalization, life-threatening events and fatal cases have been reported. (5.1)
- The presence of chronic kidney disease-mineral bone disorder (CKD-MBD) markedly increases the risk of hypocalcemia. (5.1)
- Prior to initiating Enoby in patients with advanced chronic kidney disease, evaluate for the presence of CKD-MBD. Treatment with Enoby in these patients should be supervised by a healthcare provider with expertise in the diagnosis and management of CKD-MBD. (2.2, 5.1)

INDICATIONS AND USAGE

- Enoby is a RANK ligand (RANKL) inhibitor indicated for treatment:
 - of postmenopausal women with osteoporosis at high risk for fracture. (1.1)
 - to increase bone mass in men with osteoporosis at high risk for fracture. (1.2)
 - of glucocorticoid-induced osteoporosis in men and women at high risk for fracture. (1.3)
 - to increase bone mass in men at high risk for fracture receiving androgen deprivation therapy for nonmetastatic prostate cancer (1.4)
 - to increase bone mass in women at high risk for fracture receiving adjuvant aromatase inhibitor therapy for breast cancer (1.5)

DOSE AND ADMINISTRATION

- Pregnancy must be ruled out prior to administration of Enoby. (2.1)
- Before initiating Enoby in patients with advanced chronic kidney disease, including dialysis patients, evaluate for the presence of chronic kidney disease mineral and bone disorder with intact parathyroid hormone, serum calcium, 25(OH) vitamin D, and 1,25(OH)₂ vitamin D. (2.2, 5.1, 8.6)
- Enoby should be administered by a healthcare provider. (2.3)
- Administer 60 mg every 6 months as a subcutaneous injection in the upper arm, upper thigh, or abdomen. (2.3)
- Instruct patients to take calcium 1000 mg daily and at least 400 IU vitamin D daily. (2.3)

DOSE FORMS AND STRENGTHS

- Injection: 60 mg/mL solution in a single-dose prefilled syringe (3)

CONTRAINDICATIONS

- Hypocalcemia (4, 5.1)
- Pregnancy (4, 8.1)
- Known hypersensitivity to denosumab products (4, 5.3)

WARNINGS AND PRECAUTIONS

- Hypocalcemia: Pre-existing hypocalcemia must be corrected before initiating Enoby. May worsen, especially in patients with renal impairment. Adequately supplement all patients with calcium and vitamin D. Concomitant use of calcimimetic drugs may also worsen hypocalcemia risk. Evaluate for presence of chronic kidney disease-mineral bone disorder. Monitor serum calcium. (5.1)

FULL PRESCRIBING INFORMATION: CONTENTS*

WARNING: SEVERE HYPOCALCEMIA IN PATIENTS WITH ADVANCED KIDNEY DISEASE

1 INDICATIONS AND USAGE

- Treatment of Postmenopausal Women with Osteoporosis at High Risk for Fracture
- Treatment to Increase Bone Mass in Men with Osteoporosis
- Treatment of Glucocorticoid-Induced Osteoporosis
- Treatment of Bone Loss in Men Receiving Androgen Deprivation Therapy for Prostate Cancer
- Treatment of Bone Loss in Women Receiving Adjuvant Aromatase Inhibitor Therapy for Breast Cancer

2 DOSAGE AND ADMINISTRATION

- 2.1 Preiry Testing Prior to Initiation of Enoby
- 2.2 Laboratory Testing in Patients with Advanced Chronic Kidney Disease Prior to Initiation of Enoby
- 2.3 Recommended Dosage
- 2.4 Preparation and Administration

3 DOSAGE FORMS AND STRENGTHS

4 CONTRAINDICATIONS

5 WARNINGS AND PRECAUTIONS

- 5.1 Severe Hypocalcemia and Mineral Metabolism Changes
- 5.2 Drug Products with Same Active Ingredient
- 5.3 Hypersensitivity
- 5.4 Osteonecrosis of the Jaw
- 5.5 Atypical Subtrochanteric and Diaphyseal Femoral Fractures
- 5.6 Multiple Vertebral Fractures (MVF) Following Treatment Discontinuation
- 5.7 Serious Infections
- 5.8 Dermatologic Adverse Reactions
- 5.9 Musculoskeletal Pain
- 5.10 Suppression of Bone Turnover
- 5.11 Hypercalcemia in Pediatric Patients with Osteogenesis Imperfecta

FULL PRESCRIBING INFORMATION

WARNING: SEVERE HYPOCALCEMIA IN PATIENTS WITH ADVANCED KIDNEY DISEASE

- Patients with advanced chronic kidney disease (eGFR <30 mL/min/1.73 m²), including dialysis-dependent patients, are at greater risk of severe hypocalcemia following denosumab products administration. Severe hypocalcemia resulting in hospitalization, life-threatening events and fatal cases have been reported [see *Warnings and Precautions* (5.1)].
- The presence of chronic kidney disease-mineral bone disorder (CKD-MBD) markedly increases the risk of hypocalcemia in these patients [see *Warnings and Precautions* (5.1)].
- Prior to initiating Enoby in patients with advanced chronic kidney disease, evaluate for the presence of CKD-MBD. Treatment with Enoby in these patients should be supervised by a healthcare provider with expertise in the diagnosis and management of CKD-MBD [see *Dosage and Administration* (2.2) and *Warnings and Precautions* (5.1)].

1 INDICATIONS AND USAGE

- 1.1 Treatment of Postmenopausal Women with Osteoporosis at High Risk for Fracture

Enoby is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture, defined as a history of osteoporotic fracture, or multiple risk factors for fracture, or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, denosumab reduces the incidence of vertebral, nonvertebral, and hip fractures [see *Clinical Studies* (14.1)].

2.1 Treatment to Increase Bone Mass in Men with Osteoporosis

Enoby is indicated for treatment to increase bone mass in men at high risk for fracture, defined as a history of osteoporotic fracture, or multiple risk factors for fracture, or patients who have failed or are intolerant to other available osteoporosis therapy [see *Clinical Studies* (14.2)].

2.2 Treatment of Glucocorticoid-Induced Osteoporosis

Enoby is indicated for the treatment of glucocorticoid-induced osteoporosis in men and women at high risk of fracture who are either initiating or continuing systemic glucocorticoids in a daily dosage equivalent to 7.5 mg or greater of prednisone and expected to remain on glucocorticoids for at least 6 months. High risk of fracture as defined as a history of osteoporotic fracture, multiple risk factors for fracture, or patients who have failed or are intolerant to other available osteoporosis therapy [see *Clinical Studies* (14.4)].

2.3 Treatment of Bone Loss in Men Receiving Androgen Deprivation Therapy for Prostate Cancer

Enoby is indicated as a treatment to increase bone mass in men at high risk for fracture receiving adjuvant aromatase inhibitor therapy for breast cancer [see *Clinical Studies* (14.5)].

2.4 DOSAGE AND ADMINISTRATION

2.1 Pregnancy Testing Prior to Initiation of Enoby

Pregnancy must be ruled out prior to administration of Enoby. Perform pregnancy testing in all females of reproductive potential prior to administration of Enoby. Based on findings in animals, denosumab products can cause fetal harm when administered to pregnant women [see *Use in Specific Populations* (8.1, 8.3)].

2.2 Laboratory Testing in Patients with Advanced Chronic Kidney Disease Prior to Initiation of Enoby

In patients with advanced chronic kidney disease [i.e., estimated glomerular filtration rate (eGFR) <30 mL/min/1.73 m²], including dialysis-dependent patients, evaluate for the presence of chronic kidney disease-mineral and bone disorder (CKD-MBD) with intact parathyroid hormone (iPTH), serum calcium, 25(OH) vitamin D, and 1,25(OH)₂ vitamin D prior to decisions regarding Enoby treatment. Consider also assessing bone turnover status (serum markers of bone turnover or bone biopsy) to evaluate the underlying bone disease that may be present [see *Warnings and Precautions* (5.1)].

2.3 Recommended Dosage

Enoby should be administered by a healthcare provider.

The recommended dose of Enoby is 60 mg administered as a single subcutaneous injection once every 6 months. Administer Enoby via subcutaneous injection in the upper arm, the upper thigh, or the abdomen. All patients should receive calcium 1000 mg daily and at least 400 IU vitamin D daily [see *Warnings and Precautions* (5.1)].

If a dose of Enoby is missed, administer the injection as soon as the patient is available. Thereafter, schedule injections every 6 months from the date of the last injection.

2.4 Preparation and Administration

Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration whenever solution and container permit. Enoby is a clear to slightly opalescent, colorless to pale yellow solution. Do not use if the solution is discolored or opaque, or if the solution contains particles or foreign particulate matter.

Prior to administration, Enoby may be removed from the refrigerator and brought to room temperature up to 25°C (77°F) by standing in the original container. This generally takes 15 to 30 minutes. Do not warm Enoby in any other way [see *How Supplied/Storage and Handling* (16)].

Instructions for Administration of Enoby Prefilled Syringe with Needle Safety Guard

IMPORTANT: In order to minimize accidental needlesticks, the Enoby single-dose prefilled syringe has a clear safety guard that activates automatically to cover the needle after the injection is given.

DO NOT attempt to activate the clear safety guard prior to administering the injection; it will lock in place and prevent injection.

The recommended injection sites for Enoby include:

- the upper arm OR
- the upper thigh OR
- the abdomen.

Do not press the plunger while inserting the needle.

Do not administer into muscle or blood vessel.

Pinch the skin and insert at a 45 to 90-degree angle. Push the plunger with slow and constant pressure all the way down until you feel or hear a "snap" [Figure C].

If Enoby treatment is discontinued, patients should be transitioned to an alternative antiresorptive therapy [see *Adverse Reactions* (6.1)].

2.5 Recommended Dosage

Enoby should be administered by a healthcare provider.

The recommended dose of Enoby is 60 mg administered as a single subcutaneous injection once every 6 months. Administer Enoby via subcutaneous injection in the upper arm, the upper thigh, or the abdomen. All patients should receive calcium 1000 mg daily and at least 400 IU vitamin D daily [see *Warnings and Precautions* (5.1)].

If a dose of Enoby is missed, administer the injection as soon as the patient is available. Thereafter, schedule injections every 6 months from the date of the last injection.

2.6 Preparation and Administration

Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration whenever solution and container permit. Enoby is a clear to slightly opalescent, colorless to pale yellow solution. Do not use if the solution is discolored or opaque, or if the solution contains particles or foreign particulate matter.

Prior to administration, Enoby may be removed from the refrigerator and brought to room temperature up to 25°C (77°F) by standing in the original container. This generally takes 15 to 30 minutes. Do not warm Enoby in any other way [see *How Supplied/Storage and Handling* (16)].

Instructions for Administration of Enoby Prefilled Syringe with Needle Safety Guard

IMPORTANT: In order to minimize accidental needlesticks, the Enoby single-dose prefilled syringe has a clear safety guard that activates automatically to cover the needle after the injection is given.

DO NOT attempt to activate the clear safety guard prior to administering the injection; it will lock in place and prevent injection.

The recommended injection sites for Enoby include:

- the upper arm OR
- the upper thigh OR
- the abdomen.

Do not press the plunger while inserting the needle.

Do not administer into muscle or blood vessel.

Pinch the skin and insert at a 45 to 90-degree angle. Push the plunger with slow and constant pressure all the way down until you feel or hear a "snap" [Figure C].

If Enoby treatment is discontinued, patients should be transitioned to an alternative antiresorptive therapy [see *Adverse Reactions* (6.1)].

2.7 Recommended Dosage

Enoby should be administered by a healthcare provider.

The recommended dose of Enoby is 60 mg administered as a single subcutaneous injection once every 6 months. Administer Enoby via subcutaneous injection in the upper arm, the upper thigh, or the abdomen. All patients should receive calcium 1000 mg daily and at least 400 IU vitamin D daily [see *Warnings and Precautions* (5.1)].

If a dose of Enoby is missed, administer the injection as soon as the patient is available. Thereafter, schedule injections every 6 months from the date of the last injection.

2.8 Preparation and Administration

Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration whenever solution and container permit. Enoby is a clear to slightly opalescent, colorless to pale yellow solution. Do not use if the solution is discolored or opaque, or if the solution contains particles or foreign particulate matter.

Prior to administration, Enoby may be removed from the refrigerator and brought to room temperature up to 25°C (77°F) by standing in the original container. This generally takes 15 to 30 minutes. Do not warm Enoby in any other way [see *How Supplied/Storage and Handling* (16)].

Instructions for Administration of Enoby Prefilled Syringe with Needle Safety Guard

IMPORTANT: In order to minimize accidental needlesticks, the Enoby single-dose prefilled syringe has a clear safety guard that activates automatically to cover the needle after the injection is given.

DO NOT attempt to activate the clear safety guard prior to administering the injection; it will lock in place and prevent injection.

The recommended injection sites for Enoby include:

- the upper arm OR
- the upper thigh OR
- the abdomen.

Do not press the plunger while inserting the needle.

Do not administer into muscle or blood vessel.

Pinch the skin and insert at a 45 to 90-degree angle. Push the plunger with slow and constant pressure all the way down until you feel or hear a "snap" [Figure C].

If Enoby treatment is discontinued, patients should be transitioned to an alternative antiresorptive therapy [see *Adverse Reactions* (6.1)].

2.10 Recommended Dosage

Enoby should be administered by a healthcare provider.

The recommended dose of Enoby is 60 mg administered as a single subcutaneous injection once every 6 months. Administer Enoby via subcutaneous injection in the upper arm, the upper thigh, or the abdomen. All patients should receive calcium 1000 mg daily and at least 400 IU vitamin D daily [see *Warnings and Precautions* (5.1)].

If a dose of Enoby is missed, administer the injection as soon as the patient is available. Thereafter, schedule injections every 6 months from the date of the last injection.

2.11 Preparation and Administration

Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration whenever solution and container permit. Enoby is a clear to slightly opalescent, colorless to pale yellow solution. Do not use if the solution is discolored or opaque, or if the solution contains particles or foreign particulate matter.

Prior to administration, Enoby may be removed from the refrigerator and brought to room temperature up to 25°C (77°F) by standing in the original container. This generally takes 15 to 30 minutes. Do not warm Enoby in any other way [see *How Supplied/Storage and Handling* (16)].

Instructions for Administration of Enoby Prefilled Syringe with Needle Safety Guard

IMPORTANT: In order to minimize accidental needlesticks, the Enoby single-dose prefilled syringe has a clear safety guard that activates automatically to cover the needle after the injection is given.

DO NOT attempt to activate the clear safety guard prior to administering the injection; it will lock in place and prevent injection.

The recommended injection sites for Enoby include:

- the upper arm OR
- the upper thigh OR
- the abdomen.</li

Absorption

Following subcutaneous administration, the median time to maximum denosumab concentration (T_{max}) was 10 days (range, 3 to 21 days).

Distribution

The mean volume of distribution for denosumab was 5.2 L (SD = 1.7 L).

Elimination

Serum denosumab concentrations declined over a period of 4 to 5 months with a mean half-life of 25.4 days (SD = 8.5 days; $n = 46$).

A population pharmacokinetic analysis was performed to evaluate the effects of demographic characteristics. This analysis showed no notable differences in pharmacokinetics with age (in postmenopausal women), race, or body weight (36 to 140 kg).

Specialty Product

Serum and seminal fluid concentrations of denosumab were measured in 12 healthy male volunteers (age range, 43-65 years). After a single 60 mg subcutaneous administration of denosumab, the mean (\pm SD) serum values in the serum and seminal fluid were 0.11 (\pm 0.01) and 0.09 (\pm 0.01) ng/mL, respectively, resulting in a maximum seminal fluid concentration of approximately 2% of serum levels. The median (range) T_{max} values in the serum and seminal fluid samples were 8.0 (7.9 to 21) and 8.0 (7.0 to 49) days, respectively. Among the subjects, the highest denosumab concentration in seminal fluid was 301 ng/mL at 22 days post-dose. On the first day of measurement (10 days post-dose), nine of eleven subjects had quantifiable concentrations in semen. On the last day of measurement (105 days post-dose), five subjects still had quantifiable concentrations of denosumab in seminal fluid, with a mean (\pm SD) seminal fluid concentration of 21.1 (\pm 36.5) ng/mL across all subjects ($n = 12$).

Drug Interactions

In a study of 17 postmenopausal women with low BMD and rheumatoid arthritis, treatment with etanercept (40 mg subcutaneous injection once weekly), a single-dose 60 mg subcutaneous injection was administered 7 days after the previous dose of etanercept. No clinically significant changes in the pharmacokinetics of etanercept were observed.

Cytochrome P450 substrates

In a study of 17 postmenopausal women with osteoporosis, midazolam (2 mg oral) was selected. After 2 weeks after a single-dose of denosumab (60 mg subcutaneous injection), which approximates the T_{max} of denosumab, midazolam did not affect the pharmacokinetics of midazolam, which is metabolized by cytochrome P450 3A4 (CYP3A4). This indicates that denosumab products should not alter the pharmacokinetics of drugs metabolized by CYP3A4 in postmenopausal women with osteoporosis.

Specialty Product

Gender: Mean serum denosumab concentration-time profiles observed in a study conducted in healthy men \geq 50 years were similar to those observed in a study conducted in postmenopausal women using the same dose regimen.

Age: The pharmacokinetics of denosumab were not affected by age across all populations studied whose ages ranged from 28 to 87 years.

Race: The pharmacokinetics of denosumab were not affected by race.

Renal Impairment: In a study of 55 patients with varying degrees of renal function, including patients on dialysis, the degree of renal impairment had no effect on the pharmacokinetics of denosumab; thus, dose adjustment for renal impairment is not necessary.

Hepatic Impairment: No clinical studies have been conducted to evaluate the effect of hepatic impairment on the pharmacokinetics of denosumab products.

12.6 Immunogenicity

The observed incidence of anti-drug antibodies is highly dependent on the sensitivity and specificity of the assay. Differences in assay methods preclude meaningful comparisons of the incidence of anti-drug antibodies in the studies described below with the incidence of anti-drug antibodies in other studies, including those of denosumab or of other denosumab products.

Using an electrochemiluminescent bridging immunoassay, less than 1% (53 of 513) of patients treated with denosumab for up to 5 years tested positive for binding antibodies (including preexisting, transient, and developing antibodies). None of the patients tested positive for neutralizing antibodies, as was assessed using a chemiluminescent cell-based in vitro biological assay.

There was no identified clinically significant effect of anti-drug antibodies on pharmacokinetics, pharmacodynamics, safety, or effectiveness of denosumab.

13 NONCLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

Carcinogenicity

The carcinogenic potential of denosumab products has not been evaluated in long-term animal studies.

Mutagenicity

The genotoxic potential of denosumab products has not been evaluated.

Impairment of Fertility

Denosumab had no effect on female fertility or male reproductive organs in monkeys at doses that were 13- to 50-fold higher than the recommended human dose of 60 mg subcutaneously administered once every 6 months, based on body weight (mg/kg).

13.2 Animal Toxicology and/or Pharmacology

Denosumab products are inhibitors of osteoclast bone resorption via inhibition of RANKL.

In ovariectomized monkeys, once-monthly treatment with denosumab suppressed bone turnover and increased BMD and strength of cancellous and cortical bone at doses 50-fold higher than the recommended human dose of 60 mg administered once every 6 months, based on body weight (mg/kg). Bone tissue was normal with no evidence of mineralization defects, accumulation of osteoid, or woven bone.

Because the biological activity of denosumab in animals is specific to nonhuman primates, evaluation of genetically engineered ("knockout") mice or use of other biological inhibitors of the RANK/RANKL pathway, namely OPG-Fc, provided additional information on the potential properties of denosumab. In RANK/RANKL knockout mice, reduced bone growth and lack of tooth eruption. A corroborative study in 2-week-old rats given the RANKL inhibitor OPG-Fc also showed reduced bone growth, altered growth plates, and impaired tooth eruption. These changes were partially reversible in this model when dosing with the RANKL inhibitors was discontinued.

14 CLINICAL STUDIES

14.1 Treatment of Postmenopausal Women with Osteoporosis

The efficacy and safety of denosumab in the treatment of postmenopausal osteoporosis was demonstrated in a 3-year, randomized, double-blind, placebo-controlled trial. Enrolled women had a baseline BMD T-score between -2.5 and -4.0 at either the lumbar spine or total hip. Women with other diseases (such as rheumatoid arthritis, osteogenesis imperfecta, and Paget's disease) or on therapies that affect bone were excluded from this study. The 7808 enrolled women were aged 60 to 91 years with an average age of 72 years. Women had baseline lumbar spine BMD T-score of 1.2, and 21% had a vertebral fracture at baseline. All women received 60 mg denosumab (n = 3902) once every 6 months. All women received at least 1000 mg calcium and 400 IU vitamin D supplementation daily.

The primary efficacy variable was the incidence of new morphometric (radiologically-diagnosed) vertebral fractures at 3 years. Vertebral fractures were diagnosed based on lateral spine radiographs (T4-L4) using a semiquantitative scoring method. Secondary efficacy variables included the incidence of hip fracture and nonvertebral fracture, assessed at 3 years.

Effect on Vertebral Fractures

Denosumab significantly reduced the incidence of new vertebral fractures at 3 years ($p < 0.0001$), as shown in Table 3. The incidence of new vertebral fractures at year 3 was 7.2% in the placebo-treated women compared to 2.3% for the denosumab-treated women. The absolute risk reduction was 4.8% and relative risk reduction was 68% for new morphometric vertebral fractures at year 3.

Effect on Nonvertebral Fractures

Denosumab significantly reduced the risk for new morphometric vertebral fractures regardless of age, baseline rate of bone turnover, baseline BMD, baseline history of fracture, or prior use of a drug for osteoporosis.

Effect on Hip Fractures

The incidence of hip fracture was 1.2% for placebo-treated women compared to 0.7% for denosumab-treated women at year 3. The age-adjusted absolute risk reduction of hip fractures was 0.3% with a relative risk reduction of 40% at 3 years ($p = 0.04$) (see Figure 1).

Figure 1. Cumulative Incidence of Hip Fractures Over 3 Years

10 Placebo (n = 3902) 10 Denosumab (n = 3902)

5 Placebo (n = 3902) 5 Denosumab (n = 3902)

0 Placebo (n = 3902) 0 Denosumab (n = 3902)

0 6 12 18 24 30 36

Study Month

N = number of subjects randomized

Percent Nonvertebral Fractures (%)

Treatment with denosumab resulted in a significant reduction in the incidence of nonvertebral fractures (see Table 4).

Table 3. The Effect of Denosumab on the Incidence of New Vertebral Fractures in Postmenopausal Women

	Proportion of Women with Fracture (%) ^a	Absolute Risk Reduction (%) ^a	Relative Risk Reduction (%) ^a
	(95% CI)	(95% CI)	(95% CI)
Placebo N = 3691 (%)	2.2	0.9	1.4 (0.8, 1.9)
Denosumab N = 3702 (%)	0.9	1.3	61 (42, 74)
0-1 Year	1.9	0.3	1.6 (0.5, 2.8)
0-2 Years	3.3	1.0	2.2 (0.7, 3.8)
0-3 Years	3.9	1.5	2.4 (0.7, 4.1)
			85 (33, 97)
			69 (27, 86)
			62 (22, 81)

^a Event rates based on crude rates in each interval.

^a Absolute risk reduction and relative risk reduction based on Mantel-Haenszel method adjusting for age group and ADT duration variables.

Table 4. The Effect of Denosumab on the Incidence of Nonvertebral Fractures at Year 3

	Proportion of Women with Fracture (%) ^a	Absolute Risk Reduction (%) ^a	Relative Risk Reduction (%) ^a
	(95% CI)	(95% CI)	(95% CI)
Placebo N = 3906 (%)	8.0	6.5	1.5 (0.3, 2.7)
Denosumab N = 3902 (%)	2.3	4.8	20 (5, 33)*

^a Event rates based on Kaplan-Meier estimates at 3 years.

^a Excluding those of the vertebrae (cervical, thoracic, and lumbar), skull, facial, mandible, metacarpus, and finger toe phalanges.

* $p = 0.01$.

Effect on Bone Mineral Density (BMD)

Treatment with denosumab significantly increased BMD at all anatomic sites measured at 3 years. The mean differences in BMD at 3 years were 8.8% at the lumbar spine, 6.4% at the total hip, and 5.2% at the femoral neck. Consistent effects on BMD were observed at the lumbar spine, regardless of baseline age, race, weight/body mass index (BMI), baseline BMD, and level of bone turnover.

After denosumab discontinuation, BMD returned to approximately baseline levels within 12 months.

Bone Histology and Histomorphometry

A total of 115 transiliac crest bone biopsy specimens were obtained from 92 postmenopausal women with osteoporosis at either month 24 and/or month 36 (53 women in denosumab group, 62 specimens in placebo group). Of the biopsies obtained, 15 (100%) were adequate for qualitative histology and 7 (6%) were adequate for full quantitative histomorphometry assessment.

Qualitative histology assessments showed normal architecture and quality with no evidence of mineralization defects, woven bone, or marrow fibrosis in patients treated with denosumab.

The presence of double tetracycline labeling in a biopsy specimen provides an indication of active bone remodeling, while the absence of tetracycline label suggests suppressed bone formation. In patients treated with denosumab, 35% had no tetracycline label present at the month 24 biopsy, while 100% of placebo-treated patients had double label present at both time points. When compared to placebo, treatment with denosumab resulted in virtually absent activation frequency and markedly reduced bone formation rates. However, the long-term consequences of this degree of suppression of bone remodeling are unknown.

14.2 Treatment to Increase Bone Mass in Men with Osteoporosis

The efficacy and safety of denosumab in the treatment to increase bone mass in men with osteoporosis was demonstrated in a 3-year, randomized, double-blind, placebo-controlled trial. Enrolled men had a baseline BMD T-score between -2.5 and -4.0 at either the lumbar spine or total hip. Men with other diseases (such as rheumatoid arthritis, osteogenesis imperfecta, and Paget's disease) or on therapies that affect bone were excluded from this study. The 7200 enrolled men were aged 60 to 91 years with an average age of 72 years. Men had baseline lumbar spine BMD T-score was -0.4, and 21% had a vertebral fracture at baseline. All men received 60 mg denosumab (n = 3600) once every 6 months. All men received at least 1000 mg calcium and 400 IU vitamin D supplementation daily.

The primary efficacy variable was percent change in lumbar spine BMD from baseline to 1 year. Secondary efficacy variables included percent change in total hip, and femoral neck.

Treatment with denosumab significantly increased BMD at 1 year. The treatment differences in BMD at 1 year were 4.6% (+0.9% placebo, +5.7% denosumab; 95% CI: 4.0, 5.6); $p < 0.0001$) at the lumbar spine, 2.0% (+0.3% placebo, +2.4% denosumab; 95% CI: 1.0, 3.2); and 2.2% (+0.0% placebo, +2.1% denosumab) at femoral neck. Consistent effects on BMD were observed at the lumbar spine regardless of baseline age, race, BMD, testosterone concentrations, and level of bone turnover.

Effect on Bone Mineral Density (BMD)

The primary efficacy variable was percent change in lumbar spine BMD from baseline to 1 year. Secondary efficacy variables included percent change in total hip, and femoral neck from baseline to 1 year.

Treatment with denosumab significantly increased BMD at 1 year. The treatment differences in BMD at 1 year were 4.6% (+0.9% placebo, +5.7% denosumab; 95% CI: 4.0, 5.6); $p < 0.0001$) at the lumbar spine, 2.0% (+0.3% placebo, +2.4% denosumab; 95% CI: 1.0, 3.2); and 2.2% (+0.0% placebo, +2.1% denosumab) at femoral neck. Consistent effects on BMD were observed at the lumbar spine regardless of baseline age, race, BMD, testosterone concentrations, and level of bone turnover.

Effect on Bone Mineral Density (BMD)

The primary efficacy variable was percent change in lumbar spine BMD from baseline to 1 year. Secondary efficacy variables included percent change in total hip, and femoral neck from baseline to 1 year.

Treatment with denosumab significantly increased BMD at 1 year. The treatment differences in BMD at 1 year were 4.6% (+0.9% placebo, +5.7% denosumab; 95% CI: 4.0, 5.6); $p < 0.0001$) at the lumbar spine, 2.0% (+0.3% placebo, +2.4% denosumab; 95% CI: 1.0, 3.2); and 2.2% (+0.0% placebo, +2.1% denosumab) at femoral neck. Consistent effects on BMD were observed at the lumbar spine regardless of baseline age, race, BMD, testosterone concentrations, and level of bone turnover.

Effect on Bone Mineral Density (BMD)

The primary efficacy variable was percent change in lumbar spine BMD from baseline to 1 year. Secondary efficacy variables included percent change in total hip, and femoral neck from baseline to 1 year.

Treatment with denosumab significantly increased BMD at 1 year. The treatment differences in BMD at 1 year were 4.6% (+0.9% placebo, +5.7% denosumab; 95% CI: 4.0, 5.6); $p < 0.0001$) at the lumbar spine, 2.0% (+0.3% placebo, +2.4% denosumab; 95% CI: 1.0, 3.2); and 2.2% (+0.0% placebo, +2.1% denosumab) at femoral neck. Consistent effects on BMD were observed at the lumbar spine regardless of baseline age, race, BMD, testosterone concentrations, and level of bone turnover.